UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education | CANDIDATE
NAME | | | | |-------------------|----------------------------|---------------------|--------------------| | CENTRE
NUMBER | | CANDIDATE
NUMBER | | | CHEMISTRY | | | 0620/22 | | Paper 2 | | Oct | ober/November 2013 | | | | | 1 hour 15 minutes | | Candidates ans | wer on the Question Paper. | | | | No Additional M | aterials are required. | | | | | | | | ## **READ THESE INSTRUCTIONS FIRST** Write your Centre number, candidate number and name in the spaces at the top of this page. Write in dark blue or black pen. You may need to use a pencil for any diagrams, graphs or rough working. Do not use staples, paper clips, highlighters, glue or correction fluid. DO NOT WRITE IN ANY BARCODES. Answer all questions. Electronic calculators may be used. A copy of the Periodic Table is printed on page 16. You may lose marks if you do not show your working or if you do not use appropriate units. At the end of the examination, fasten all your work securely together. The number of marks is given in brackets [] at the end of each question or part question. This document consists of 15 printed pages and 1 blank page. ## **BLANK PAGE** 1 (a) Choose from the list of compounds below to answer the following questions. For Examiner's Use ammonia ammonium chloride calcium carbonate calcium oxide copper(II) sulfate ethane iron(II) chloride methane water Each compound can be used once, more than once or not at all. Which compound: | | (i) | is an alkaline gas, | [1] | |-----|-------|--|-------------| | | (ii) | is a gas contributing to climate change, | [1] | | | (iii) | is a salt containing only non-metals, | [1] | | | (iv) | turns blue cobalt chloride paper pink, | [1] | | | (v) | reacts with an acid to release carbon dioxide, | [1] | | | (vi) | gives a light blue precipitate when aqueous sodium hydroxide is added to a solu of its aqueous ions? | tion
[1] | | (b) | Wh | at is the meaning of the term compound? | | | | | | | | (c) | | mplete the following symbol equation for the complete combustion of methanogen. | e in | | | | $CH_4 + \dots O_2 \rightarrow \dots + 2H_2O$ | [2] | | | | [Tota | l: 9] | 2 (a) The table describes the reactivity of some metals with hydrochloric acid. | For | |------------| | Examiner's | | Use | | metal | observations | |-----------|--| | calcium | Many bubbles produced. Reaction mixture may boil. | | magnesium | Steady stream of bubbles produced. Reaction mixture gets hot. | | sodium | Many bubbles produced. May explode. | | zinc | Slow stream of bubbles produced. Reaction mixture rises slightly in temperature. | Put these metals in order of their reactivity. | least reactive - | | → most | reactive | |------------------|--|--------|----------| | | | | | | | | | | | | | | [2] | (b) Complete the word equation for the reaction of magnesium with hydrochloric acid. | magnesium | + | hydrochloric acid | \rightarrow |
+ | | |-----------|---|-------------------|---------------|-------|-----| | | | | | | [2] | **(c)** When magnesium reacts with hydrochloric acid, magnesium atoms lose electrons. What type of magnesium particle is formed? Put a ring around the correct answer. | covalent | ion | molecule | proton | | |----------|-----|----------|--------|-----| | | | | | [1] | (d) Complete the diagram to show the electronic structure of a sodium atom. [2] | For | |------------| | Examiner's | | Use | | | | (e) | A student added large lumps of zinc to 20 cm ³ of 2 mol/dm ³ hydrochloric acid. | |-----|---| | | She carried out the reaction at 15 °C. | | | She measured the volume of gas given off at various time intervals. | (i) Draw a labelled diagram of the apparatus she could use for this experiment. | $\boldsymbol{\gamma}$ | 1 | | |-----------------------|---|--| | . 1 | | | | \sim | ш | | | | | | | (ii) Describe three different things she o | ould do to increase the rate of this reaction | |--|---| |--|---| | 1 | | | |---|----|---| | 2 | | | | 3 | เจ | 1 | [Total: 13] **3** The diagram below shows the apparatus which can be used to obtain pure water from sea-water. For Examiner's Use | (a) | State | the | name | of | this | process. | |-----|-------|-----|------|----|------|----------| |-----|-------|-----|------|----|------|----------| | T1: | 1 | |--------|---| |
11 | 1 | | | | - (b) Label the boxes on the diagram above with the correct names of the pieces of apparatus shown. [3] - (c) Complete the following sentences using words from the list below. | | boils | condenses | cools | freezes | |---------|--------------|------------------|---------------------|------------------------------| | | higher | lower | melts | | | Water | has a | boiling po | int than salt. Wher | a solution of salt is heated | | strongl | y, the water | and | escapes as stear | m. When the steam cools, it | | | back | to liquid water. | | [3] | (d) The table shows the concentration of the seven most abundant compounds in sea-water. For Examiner's Use | compound | ions present | concentration in g/m³ | |--------------------|--|-----------------------| | calcium carbonate | Ca ²⁺ and CO ₃ ²⁻ | 100 | | calcium sulfate | Ca ²⁺ and SO ₄ ²⁻ | 1 800 | | magnesium chloride | Mg ²⁺ and C <i>l</i> - | 6 800 | | magnesium sulfate | | 5 700 | | potassium bromide | K⁺ and Br⁻ | 100 | | potassium chloride | K⁺ and C <i>l</i> ⁻ | 800 | | sodium chloride | Na⁺ and C <i>l</i> ⁻ | 28 000 | | (i) | Which negative ion is present in the greatest concentration in sea-water? | | |-------|---|-----| | | | [1] | | (ii) | Which positive ion is present in the lowest concentration in sea-water? | | | | | [1] | | (iii) | Write the formulae of the two ions present in magnesium sulfate. | | | | | [2] | | | [Total: | 11] | **4 (a)** Match the compounds on the left with the statements on the right. The first one has been done for you. For Examiner's Use | butane | a hydrocarbon containing four carbon atoms | |---------------|--| | poly(ethene) | it decolourises
bromine water | | ethene | it is the main constituent of natural gas | | methane | it contains a –COOH
functional group | | ethanoic acid | it has a very long chain of carbon atoms | [4] - (b) Methane and ethene are hydrocarbons. - (i) What is meant by the term *hydrocarbon*?[1] (ii) The structure of ethene is shown below. Use this structure to explain why ethene is an unsaturated hydrocarbon.[1] (c) Molecules of ethene react together at high temperature and pressure to form poly(ethene). Which **one** of the following words best describes the molecules of ethene in this reaction? Put a ring around the correct answer. acids alkanes monomers polymers [1] | (d) | Eth | Ethanoic acid can be made by the oxidation of ethanol. | | | | | |-----|------|--|-----|--|--|--| | | (i) | What is meant by the term oxidation? | Use | | | | | | | [1] | | | | | | | (ii) | Ethanol can be made by fermentation. Complete the word equation for fermentation. | | | | | | | | yeast | | | | | | | | + ethanol | | | | | | | | [2] | | | | | | | | [Total: 10] | | | | | For Examiner's Use | (a) | - | our answer, write about | |-----|------|--| | | • | the structure of an alloy, why alloys are often more useful than pure metals. | | | | | | | | | | | | | | | | [3] | | | | | | (b) | Iron | is a transition element. | | | (i) | Which two of the following statements about iron are correct? Tick two boxes. | | | | A freshly-cut surface of iron is green in colour. | | | | Iron exists in only one oxidation state in its compounds. | | | | Iron has a high density. | | | | Iron has a giant covalent structure. | | | | Iron has a high melting point. [2] | | | (ii) | Describe one method of rust prevention and explain how it works. | | | | method | | | | how this works | | | | [2] | | (c) | Iron | is used as a catalyst in the Haber process for making ammonia. | | (-) | | What does the term <i>catalyst</i> mean? | | | (-) | [1] | | | (ii) | Describe a test for ammonia. | | | | test | | | | result[2] | | | | | | (iii) | Ammonia is used to make fertilisers. Explain why farmers need to add fertilisers to the soil. | For
Examiner's
Use | |-------|--|--------------------------| | | | | | | | | | | [2] | | | | [Total: 12] | | For **6 (a)** Garlic is a vegetable that is often used in cooking. It has a strong smell. A student is cutting up garlic in the kitchen. | | | er a time, the smell of the garlic travels all over the house even though there are no rents of air. | |-----|------|--| | | | e the kinetic particle theory to explain why the smell of garlic travels all over the house. | | | | | | | | | | | | | | | | [3] | | (b) | | e smell of garlic is due to a compound containing sulfur. e structure of this compound (compound A) is shown below. | | | | $CH_2 = CH - CH_2 - S - S - CH_2 - CH = CH_2$ | | | | compound A | | | (i) | Write the molecular formula for this compound. | | | | [1] | | | (ii) | Another organic sulfur compound (compound B) is shown below. | | | | C_2H_5 | | | | C=CH | | | | C_2 C_5 C_2 C_3 C_4 C_5 C_4 | | | | compound B | | | | By comparing the formulae of compound A and compound B , how can you tell that compound A has the higher relative molecular mass? You are not required to do any mathematical calculations. | | | | | | (c) An isotope of sulfur has a nucleon r | | | as a nucleon num | ber of 34 and an a | atomic number of | 16. | | |--|-------|--------------------|--|----------------------|---------------------|-----------|-----| | | (i) | How many neutro | ons are there in or | ne atom of this iso | tope of sulfur? | | | | | | | | | | | [1] | | | (ii) | What is meant by | the terms | | | | | | | | isotope, | | | | | | | | | • | | | | | [1] | | | | | | | | | | | | ,,,,, | | | | | | ניו | | | (iii) | | ain sulfur as a con
owing sentences (| | | | | | | | coal | dioxide | hydrogen | monoxide | | | | | | nitrogen | oxidised | reduced | water | | | | | | Fuels such as | CO | ntain sulfur. | | | | | | | When these fuels | burn, the sulfur is | 3 | . to sulfur | | | | | | This reacts with . | iı | n the atmosphere | to form an acidic s | solution. | [4] | | | (iv) | Describe and exp | plain the effect of a | acid rain on buildir | ngs made of limes | tone. | [2] | | | | | | | | | | | | | | | | | [Total: | 10] | For Examiner's Use 7 The diagram shows a kiln for making lime (calcium oxide) from limestone (calcium carbonate). For Examiner's Use (a) (i) Which letter on the diagram above shows where the limestone is added, where the waste gases exit from the kiln? [2] (ii) Complete the symbol equation for the decomposition of limestone. $$CaCO_3 \rightarrow CaO + \dots$$ (iii) When 50 g of calcium carbonate is decomposed, 28 g of calcium oxide is formed. Calculate the minimum mass of calcium carbonate needed to produce 8.4 g of calcium oxide. [1] [1] **(b)** The table below shows the temperatures at which some Group II carbonates decompose. | Group II carbonate | temperature at which Group II carbonates decompose/°C | |---------------------|---| | beryllium carbonate | 100 | | magnesium carbonate | 350 | | calcium carbonate | 900 | (i) Describe the pattern in the ease of decomposition of Group II carbonates. ______[1] For Examiner's Use | | (ii) | Predict the decomposition temperature of barium carbonate. | | | | | | | | |-----|-------|---|---|--|--|--|--|--|--| | | | °C [1 |] | | | | | | | | (c) | Lim | Lime is calcium oxide. | | | | | | | | | | (i) | State one use of lime. | | | | | | | | | | | [1 |] | | | | | | | | | (ii) | What type of oxide is calcium oxide? | | | | | | | | | | | [1 |] | | | | | | | | | (iii) | Calculate the relative formula mass of calcium oxide. Use your Periodic Table to help you. | [1 |] | | | | | | | | (d) | | cium is extracted from its compounds by electrolysis. Igest why calcium is extracted by electrolysis rather than by reduction with carbon. | | | | | | | | | | | [1 |] | | | | | | | | | | [Total: 10 |] | | | | | | | DATA SHEET The Periodic Table of the Elements | Group | 0 | 4 He Helium | 20
Ne
Neon | 40
Ar
Argon | 8 Ā | Krypton
36 | 131 Xe Xenon | | | Lutetium 71 | Lr
Lawrendum
103 | | |-------|-----|--------------------|-------------------------------|-------------------------------------|------------------|-----------------|------------------------------------|------------------------------------|------------------------------|---|---|---------------| | | II/ | | 19 Fluorine | 35.5 C1 Chlorine | 80
D | Bromine
35 | | At Astatine 85 | | 73
Yb
Ytterbium
70 | | | | | | | 16
Oxygen 8 | 32
S
Suffur
16 | % Se | Selenium
34 | 128 Te Tellurium | | | 169 Tm Thulium | Mendelevium
101 | | | | > | | , | 14 N Nitrogen 7 | 31 Phosphorus 15 | 75
As | Arsenic
33 | 122
Sb
Antimony | 209 Bi Bismuth | | 167
Er
Erbium
68 | Fm
Fermium | | | ≥ | | 12
C
Carbon
6 | 28
Si
Silicon | | Germanium
32 | 119
Sn
Tn | 207 Pb | | 165
Ho
Holmium
67 | ES
Einsteinium
99 | | | | Ш | | 11 B Boron 5 | 27
A 1
Aluminium
13 | 70
Ga | Gallium
31 | 115
In
Indium | | | 162
Dy
Dysprosium
66 | Celifornium 98 | | | | | | | | 65
Zn | Zinc
30 | 112
Cd
Cadmium | | | 159 Tb Terbium 65 | BK Berkelium | | | | | | | | C 62 | Copper
29 | 108
Ag
Silver
47 | 197
Au
Gold | | 157
Gd
Gadolinium
64 | Curium
Ourium | | | | | | | | 28
Z | Nickel
28 | 106 Pd Palladium 46 | 195
Pt
Platinum
78 | | 152
Eu
Europium
63 | Am Americium 95 | | | | | | | | ္မေ | | 103
Rh
Rhodium
45 | | | Samarium 62 | | | | | | 1
Hydrogen | | | 56
Fe | Iron
26 | 101 Ru Ruthenium 44 | 190
Os
Osmium
76 | | Pm
Promethium
61 | Np
Neptunium
93 | | | | | | | | Mn S5 | Manganese
25 | Tc Technetium | 186 Re Rhenium 75 | | Neodymium 60 | 238
U
Uranium
92 | | | | | | | | 52
Cr | Chromium
24 | 96
Mo
Molybdenum | 184 W Tungsten 74 | | Pr
Praseodymium
59 | Pa
Protactinium
91 | | | | | | | | 51 | Vanadium
23 | 93
Nb
Niobium
41 | 181 Ta Tantalum | | 140 Ce Cerium | 232
Th
Thorium | | | | | | | | 88 E | Titanium
22 | 91
Zr
Zirconium
40 | | | | nic mass
bol
nic) number | | | | | | | | S C | Scandium
21 | 89 × | 139 La Lanthanum * | 227
Ac
Actinium | l series
eries | a = relative atomic massX = atomic symbolb = proton (atomic) number | | | | = | | Beryllium | 24 Mg Magnesium 12 | Ca | Calcium
20 | Strontium | 137 Ba Barlum 56 | 226 Rad ium Radium 88 | *58-71 Lanthanoid series
190-103 Actinoid series | в Х | | | | _ | | 7 Li Lithium | 23
Na
Sodium | ® X | Potassium
19 | Rb
Rubidium
37 | 133 CS Caesium 55 | Fr
Francium
87 | *58-71 L | Key | | The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.). Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included the publisher will be pleased to make amends at the earliest possible opportunity. University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.